Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 13, 2026
-
Managing stress is essential for mental and physical health, yet current methods rely on subjective self-assessments or indirect physiological measurements, often lacking accuracy. Existing wearable sensors primarily target a single stress hormone, cortisol, using single-point measurements that fail to capture real-time changes and distinguish between acute and chronic stress. To address this, we present Stressomic, a wearable multiplexed microfluidic biosensor for noninvasive monitoring of cortisol, epinephrine, and norepinephrine in sweat. Stressomic integrates iontophoresis-driven sweat extraction with bursting valve-regulated microfluidic channels for continuous sampling and analysis. Gold nanodendrite–decorated laser-engraved graphene electrodes achieve picomolar-level sensitivity, enabling simultaneous detection of multiple stress hormones. Electrochemical assays and human studies demonstrate that Stressomic reliably tracks hormone fluctuations in response to physical, psychological, and pharmacological stressors. Distinct temporal patterns reveal the dynamic interplay between the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. This platform enables continuous, multiplexed stress profiling, offering opportunities for early detection of maladaptive responses, personalized stress management, and deeper insights into stress biology.more » « lessFree, publicly-accessible full text available August 8, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Recent respiratory outbreaks have garnered substantial attention, yet most respiratory monitoring remains confined to physical signals. Exhaled breath condensate (EBC) harbors rich molecular information that could unveil diverse insights into an individual’s health. Unfortunately, challenges related to sample collection and the lack of on-site analytical tools impede the widespread adoption of EBC analysis. Here, we introduce EBCare, a mask-based device for real-time in situ monitoring of EBC biomarkers. Using a tandem cooling strategy, automated microfluidics, highly selective electrochemical biosensors, and a wireless reading circuit, EBCare enables continuous multimodal monitoring of EBC analytes across real-life indoor and outdoor activities. We validated EBCare’s usability in assessing metabolic conditions and respiratory airway inflammation in healthy participants, patients with chronic obstructive pulmonary disease or asthma, and patients after COVID-19 infection.more » « less
-
Micro- and nanorobots excel in navigating the intricate and often inaccessible areas of the human body, offering immense potential for applications such as disease diagnosis, precision drug delivery, detoxification, and minimally invasive surgery. Despite their promise, practical deployment faces hurdles, including achieving stable propulsion in complex in vivo biological environments, real-time imaging and localization through deep tissue, and precise remote control for targeted therapy and ensuring high therapeutic efficacy. To overcome these obstacles, we introduce a hydrogel-based, imaging-guided, bioresorbable acoustic microrobot (BAM) designed to navigate the human body with high stability. Constructed using two-photon polymerization, a BAM comprises magnetic nanoparticles and therapeutic agents integrated into its hydrogel matrix for precision control and drug delivery. The microrobot features an optimized surface chemistry with a hydrophobic inner layer to substantially enhance microbubble retention in biofluids with multiday functionality and a hydrophilic outer layer to minimize aggregation and promote timely degradation. The dual-opening bubble-trapping cavity design enables a BAM to maintain consistent and efficient acoustic propulsion across a range of biological fluids. Under focused ultrasound stimulation, the entrapped microbubbles oscillate and enhance the contrast for real-time ultrasound imaging, facilitating precise tracking and control of BAM movement through wireless magnetic navigation. Moreover, the hydrolysis-driven biodegradability of BAMs ensures its safe dissolution after treatment, posing no risk of long-term residual harm. Thorough in vitro and in vivo experimental evidence demonstrates the promising capabilities of BAMs in biomedical applications. This approach shows promise for advancing minimally invasive medical interventions and targeted therapeutic delivery.more » « lessFree, publicly-accessible full text available December 11, 2025
An official website of the United States government
